Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viral Immunol ; 37(3): 167-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574259

RESUMO

Zika virus (ZIKV) is an emerging flavivirus associated with several neurological diseases such as Guillain-Barré syndrome in adults and microcephaly in newborn children. Its distribution and mode of transmission (via Aedes aegypti and Aedes albopictus mosquitoes) collectively cause ZIKV to be a serious concern for global health. High genetic homology of flaviviruses and shared ecology is a hurdle for accurate detection. Distinguishing infections caused by different viruses based on serological recognition can be misleading as many anti-flavivirus monoclonal antibodies (mAbs) discovered to date are highly cross-reactive, especially those against the envelope (E) protein. To provide more specific research tools, we produced ZIKV E directed hybridoma cell lines and characterized two highly ZIKV-specific mAb clones (mAbs A11 and A42) against several members of the Flavivirus genus. Epitope mapping of mAb A11 revealed glycan loop specificity in Domain I of the ZIKV E protein. The development of two highly specific mAbs targeting the surface fusion protein of ZIKV presents a significant advancement in research capabilities as these can be employed as essential tools to enhance our understanding of ZIKV identification on infected cells ex vivo or in culture.


Assuntos
Aedes , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Recém-Nascido , Humanos , Proteínas do Envelope Viral , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Commun Biol ; 5(1): 1081, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217024

RESUMO

SARS-CoV-2 worldwide spread and evolution has resulted in variants containing mutations resulting in immune evasive epitopes that decrease vaccine efficacy. We acquired SARS-CoV-2 positive clinical samples and compared the worldwide emerged spike mutations from Variants of Concern/Interest, and developed an algorithm for monitoring the evolution of SARS-CoV-2 in the context of vaccines and monoclonal antibodies. The algorithm partitions logarithmic-transformed prevalence data monthly and Pearson's correlation determines exponential emergence of amino acid substitutions (AAS) and lineages. The SARS-CoV-2 genome evaluation indicated 49 mutations, with 44 resulting in AAS. Nine of the ten most worldwide prevalent (>70%) spike protein changes have Pearson's coefficient r > 0.9. The tenth, D614G, has a prevalence >99% and r-value of 0.67. The resulting algorithm is based on the patterns these ten substitutions elucidated. The strong positive correlation of the emerged spike protein changes and algorithmic predictive value can be harnessed in designing vaccines with relevant immunogenic epitopes. Monitoring, next-generation vaccine design, and mAb clinical efficacy must keep up with SARS-CoV-2 evolution, as the virus is predicted to remain endemic.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Algoritmos , Anticorpos Monoclonais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Epitopos , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética
4.
bioRxiv ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34751271

RESUMO

SARS-CoV-2 worldwide emergence and evolution has resulted in variants containing mutations resulting in immune evasive epitopes that decrease vaccine efficacy. We acquired clinical samples, analyzed SARS-CoV-2 genomes, used the most worldwide emerged spike mutations from Variants of Concern/Interest, and developed an algorithm for monitoring the SARS-CoV-2 vaccine platform. The algorithm partitions logarithmic-transformed prevalence data monthly and Pearson's correlation determines exponential emergence. The SARS-CoV-2 genome evaluation indicated 49 mutations. Nine of the ten most worldwide prevalent (>70%) spike protein changes have r- values >0.9. The tenth, D614G, has a prevalence >99% and r -value of 0.67. The resulting algorithm is based on the patterns these ten substitutions elucidated. The strong positive correlation of the emerged spike protein changes and algorithmic predictive value can be harnessed in designing vaccines with relevant immunogenic epitopes. SARS-CoV-2 is predicted to remain endemic and continues to evolve, so must SARS-CoV-2 monitoring and next-generation vaccine design.

5.
Front Microbiol ; 10: 259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814992

RESUMO

West Nile virus (WNV) is an enveloped positive-stranded RNA virus that causes meningitis, encephalitis, and acute flaccid paralysis in humans. There are no therapeutic agents available for use against WNV infection. Alpha-2 macroglobulin (A2M) is a major plasma proteinase inhibitor that also has important role in immune modulation. In mice, pregnancy zone protein (PZP) and murinoglobulin-1 (MUG-1) are two close homologous of human A2M. In this study, we investigated the role of PZP and MUG-1 proteins in the pathogenesis of WNV infection in mice. Adult C57BL/6J wild-type and PZP/MUG-1 double knockout (DKO) mice were inoculated subcutaneously with WNV and mortality, virus burden, and immune responses were analyzed. Infection of wild-type (WT) mice with WNV resulted in significantly high morbidity and mortality. In comparison, no mortality was observed in DKO mice, suggesting that PZP and MUG-1 play a deleterious role in WNV infection. Increased survival in WNV-infected DKO mice was associated with significantly low viral burden in serum, spleen, kidney, and brain compared to WT mice. In addition, significantly reduced levels of type 1 interferon and WNV-specific antibodies were observed in the DKO mice compared to WT mice. We further demonstrated that protein levels of inflammatory cytokines and chemokines in the serum, spleen, and brain were significantly reduced in DKO mice compared to WT mice. Collectively our data demonstrate that lack of PZP and MUG-1 restricts the pathogenesis of WNV infection in mice.

6.
Front Immunol ; 9: 2464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467501

RESUMO

Zika Virus (ZIKV), a virus with no severe clinical symptoms or sequelae previously associated with human infection, became a public health threat following an epidemic in French Polynesia 2013-2014 that resulted in neurological complications associated with infection. Although no treatment currently exists, several vaccines using different platforms are in clinical development. These include nucleic acid vaccines based on the prM-E protein from the virus and purified formalin-inactivated ZIKV vaccines (ZPIV) which are in Phase 1/2 clinical trials. Using a recombinant subunit platform consisting of antigens produced in Drosophila melanogaster S2 cells, we have previously shown seroconversion and protection against viremia in an immunocompetent mouse model. Here we demonstrate the efficacy of our recombinant subunits in a non-human primate (NHP) viremia model. High neutralizing antibody titers were seen in all protected macaques and passive transfer demonstrated that plasma from these NHPs was sufficient to protect against viremia in mice subsequently infected with ZIKV. Taken together our data demonstrate the immunogenicity and protective efficacy of the recombinant subunit vaccine candidate in NHPs as well as highlight the importance of neutralizing antibodies in protection against ZIKV infection and their potential implication as a correlate of protection.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas de Subunidades/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Viremia/veterinária , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Linhagem Celular , Drosophila melanogaster/citologia , Feminino , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Viremia/prevenção & controle , Viremia/virologia , Infecção por Zika virus/imunologia
7.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29359186

RESUMO

Following the 2015 Zika virus (ZIKV) outbreaks in the South Pacific, Caribbean, and Americas, ZIKV has emerged as a serious threat due to its association with infantile microcephaly and other neurologic disorders. Despite an international effort to develop a safe and effective vaccine to combat congenital Zika syndrome and ZIKV infection, only DNA and mRNA vaccines encoding the precursor membrane (prM) and envelope (E) proteins, an inactivated-ZIKV vaccine, and a measles virus-based ZIKV vaccine are currently in phase I or II (prM/E DNA) clinical trials. A ZIKV vaccine based on a nonreplicating, recombinant subunit platform offers a higher safety profile than other ZIKV vaccine candidates but is still highly immunogenic, inducing high virus-neutralizing antibody titers. Here, we describe the production and purification of Drosophila melanogaster S2 insect cell-derived, soluble ZIKV E protein and evaluate its immunogenicity and efficacy in three different mouse strains. As expected, significant virus-specific antibody titers were observed when using formulations containing clinically relevant adjuvants. Immunized mice challenged with live virus demonstrate inhibition of virus replication. Importantly, plaque reduction neutralization tests (PRNTs) indicate the high-titer production of neutralizing antibodies, a correlate of protection in the defense against ZIKV infection. ZIKV challenge of immunocompetent mice led to full protection against viremia with two doses of adjuvanted vaccine candidates. These data demonstrate a proof of concept and establish recombinant subunit immunogens as an effective vaccine candidate against ZIKV infection. IMPORTANCE The recent outbreaks of Zika virus (ZIKV) infection in French Polynesia, the Caribbean, and the Americas have highlighted the severe neuropathological sequelae that such an infection may cause. The development of a safe, effective ZIKV vaccine is critical for several reasons: (i) the difficulty in diagnosing an active infection due to common nonspecific symptoms, (ii) the lack of a specific antiviral therapy, and (iii) the potentially devastating pathological effects of in utero infection. Moreover, a vaccine with an excellent safety profile, such as a nonreplicating, noninfectious vaccine, would be ideal for high-risk people (e.g., pregnant women, immunocompromised patients, and elderly individuals). This report describes the development of a recombinant subunit protein vaccine candidate derived from stably transformed insect cells expressing the ZIKV envelope protein in vitro, the primary antigen to which effective virus-neutralizing antibodies are engendered by immunized animals for several other flaviviruses; the vaccine candidate elicits effective virus-neutralizing antibodies against ZIKV and provides protection against ZIKV infection in mice.

8.
Virol J ; 14(1): 75, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28399888

RESUMO

BACKGROUND: Animal models are critical to understand disease and to develop countermeasures for the ongoing epidemic of Zika virus (ZIKV). Here we report that immunocompetent guinea pigs are susceptible to infection by a contemporary American strain of ZIKV. METHODS: Dunkin-Hartley guinea pigs were inoculated with 106 plaque-forming units of ZIKV via subcutaneous route and clinical signs were observed. Viremia, viral load in the tissues, anti-ZIKV neutralizing antibody titer, and protein levels of multiple cytokine and chemokines were analyzed using qRT-PCR, plaque assay, plaque reduction neutralization test (PRNT) and multiplex immunoassay. RESULTS: Upon subcutaneous inoculation with PRVABC59 strain of ZIKV, guinea pigs demonstrated clinical signs of infection characterized by fever, lethargy, hunched back, ruffled fur, and decrease in mobility. ZIKV was detected in the whole blood and serum using qRT-PCR and plaque assay. Anti-ZIKV neutralizing antibody was detected in the infected animals using PRNT. ZIKV infection resulted in a dramatic increase in protein levels of multiple cytokines, chemokines and growth factors in the serum. ZIKV replication was observed in spleen and brain, with the highest viral load in the brain. This data demonstrate that after subcutaneous inoculation, the contemporary ZIKV strain is neurotropic in guinea pigs. CONCLUSION: The guinea pig model described here recapitulates various clinical features and viral kinetics observed in ZIKV-infected patients, and therefore may serve as a model to study ZIKV pathogenesis, including pregnancy outcomes and for evaluation of vaccines and therapeutics.


Assuntos
Modelos Animais de Doenças , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Zika virus/crescimento & desenvolvimento , Zika virus/patogenicidade , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Citocinas/sangue , Cobaias , Imunoensaio , Testes de Neutralização , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral , Ensaio de Placa Viral , Viremia , Zika virus/imunologia , Zika virus/isolamento & purificação
9.
Vaccine ; 28(15): 2705-15, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20097152

RESUMO

Truncated recombinant dengue virus envelope protein subunits (80E) are efficiently expressed using the Drosophila Schneider-2 (S2) cell expression system. Binding of conformationally sensitive antibodies as well as X-ray crystal structural studies indicate that the recombinant 80E subunits are properly folded native-like proteins. Combining the 80E subunits from each of the four dengue serotypes with ISCOMATRIX adjuvant, an adjuvant selected from a set of adjuvants tested for maximal and long lasting immune responses, results in high titer virus neutralizing antibody responses. Immunization of mice with a mixture of all four 80E subunits and ISCOMATRIX adjuvant resulted in potent virus neutralizing antibody responses to each of the four serotypes. The responses to the components of the tetravalent mixture were equivalent to the responses to each of the subunits administered individually. In an effort to evaluate the potential protective efficacy of the Drosophila expressed 80E, the dengue serotype 2 (DEN2-80E) subunit was tested in both the mouse and monkey challenge models. In both models protection against viral challenge was achieved with low doses of antigen in the vaccine formulation. In non-human primates, low doses of the tetravalent formulation induced good virus neutralizing antibody titers to all four serotypes and protection against challenge with the two dengue virus serotypes tested. In contrast to previous reports, where subunit vaccine candidates have generally failed to induce potent, protective responses, native-like soluble 80E proteins expressed in the Drosophila S2 cells and administered with appropriate adjuvants are highly immunogenic and capable of eliciting protective responses in both mice and monkeys. These results support the development of a dengue virus tetravalent vaccine based on the four 80E subunits produced in the Drosophila S2 cell expression system.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Linhagem Celular , Colesterol/administração & dosagem , Cristalografia por Raios X , Vírus da Dengue/química , Vírus da Dengue/genética , Modelos Animais de Doenças , Drosophila , Combinação de Medicamentos , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfolipídeos/administração & dosagem , Dobramento de Proteína , Estrutura Terciária de Proteína , Saponinas/administração & dosagem , Vacinas de Subunidades/imunologia , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...